Unil

**UNIL** | Université de Lausanne



Universities of Basel, Bern, Lausanne & Neuchâtel (Switzerland) Swiss Federal Institute of Technology, Zürich (Switzerland) Stanford University (USA)

# Functional error modeling for Bayesian inference in hydrogeology

**Laureline Josset** 

PhD supervisor Prof. Ivan Lunati

Institute of Earth Sciences University of Lausanne

| le savoir vivant |

## Challenges in groundwater problems Motivation



#### **Typical question:**

What is the concentration of contaminant in the drinking water?

#### **Problem:**

Many uncertainties in the aquifer properties

#### Solution: Monte Carlo approaches

Uncertainty quantification, inversion, history matching, ...

UNIL | Université de Lausanne

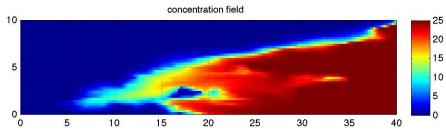
## Challenges in groundwater problems Monte Carlo approaches

## Description of the uncertainty on the permeability field

- Generate multiple geostatistical realizations
  - Based on prior knowledge
  - Methods: object-based, multipoint statistics, process-based, ...

#### Issue

- Not the quantity of interest!
- Flow simulation for each of the realizations
  - Typical order: 10<sup>3</sup>-10<sup>5</sup> simulations
  - > Untractable computational cost



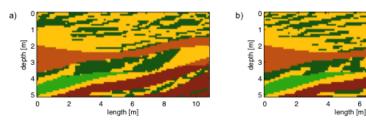
#### Simulation of saline intrusion

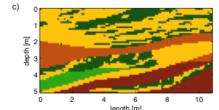
UNIL | Université de Lausanne

11...:0



*"Truth" inspired from the Herten test case (Bayer et al. 2011)* 



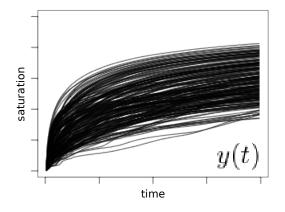


| d)  | Hydraulic conductivity in $m/s$ | Porosity |
|-----|---------------------------------|----------|
| Ι   | $2.2 \cdot 10^{-5}$             | 0.21     |
| Π   | $1.2 \cdot 10^{-3}$             | 0.32     |
| III | $6.1 \cdot 10^{-5}$             | 0.13     |
| IV  | $2.4 \cdot 10^{-4}$             | 0.16     |
| V   | $8.4 \cdot 10^{-2}$             | 0.25     |

*3* examples of geostatistical realizations generated using Direct Sampling (Mariethoz et al. 2010)

laureline.josset@unil.ch - MASCOT-NUM 2015

## How to simulate flow?



#### Exact model

- Full physics flow simulation
- Too costly

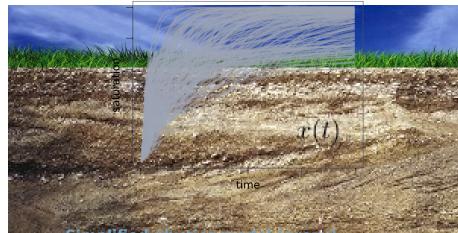
Mail

UNIL | Université de Lausanne

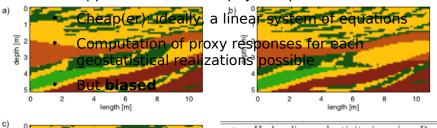
- Impossible to solve systematically for all geostatistical realizations
- Only for a few of them

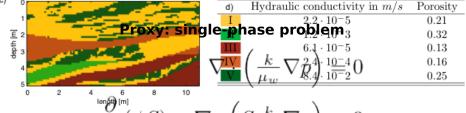
#### Example: two-phase problem

$$\nabla \cdot \left[ \left( \frac{k_n(S)}{\mu_n} + \frac{k_w(1-S)}{\mu_w} \right) k \nabla p \right] = 0$$
$$\frac{\partial}{\partial t} (\phi S) - \nabla \cdot \left( \frac{k_n(S)}{\mu_n} k \nabla p \right) = 0$$



**"Truth**" **Inspired from the Herten test case (Bayer et al.** 2011) Approximation of the physical processes





3 examples of geoStatist kal (Sližations) generated using Direct Sampking (Mariethoz et al.<sup>4</sup>2010)

laureline.josset@unil.ch - MASCOT-NUM 2015

## How to simulate flow?



#### Exact model

- Full physics flow simulation
- Too costly
- Impossible to solve systematically for all geostatistical realizations
- Only for a few of them

#### **Error model**

UNIL | Université de Lausanne

- To "recover" the missing physics
- Mapping between curves = regression model

#### Simplified physics model (proxy)

- Approximation of the physical processes
- Cheap(er): ideally, a linear system of equations
- Computation of proxy responses for each geostatistical realizations possible
- But **biased**

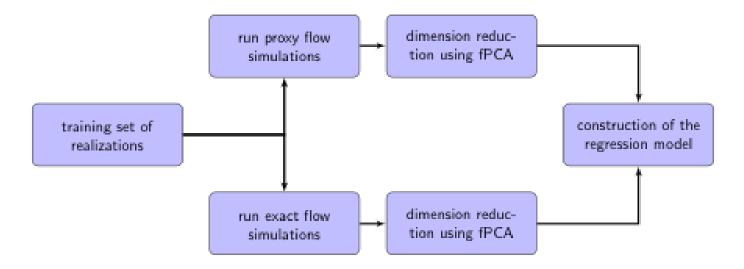
How? Existing solutions:

- → Oonaueentrigneet onfordelizations
- $\vartheta_i$  (Using Autorional (QA $_i(t) + \epsilon_i(t)$
- (Ramsay et al. 2006, 2009)
   Fully functional linear model

$$y_i(t) = \beta_0(t) + \int \beta_1(s,t) x_i(s) ds + \epsilon_i(t)$$



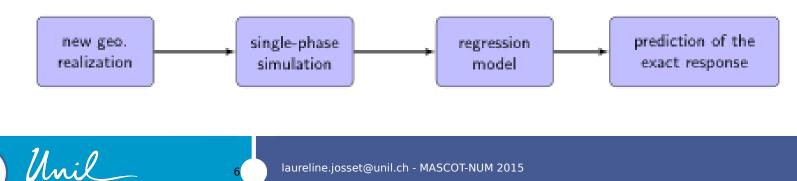
#### Training phase of the error model



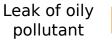
#### Prediction of the of the error model

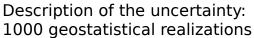
E

UNIL | Université de Lausanne









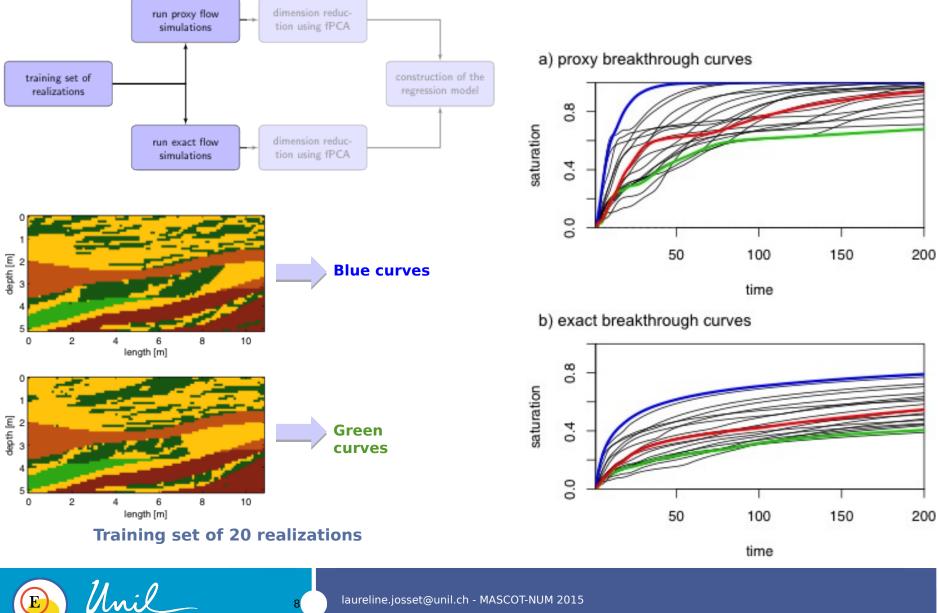
# ODD geostatistical realizations ILLUSTRATION 1 UNCERTAINTY QUANTIFICATION



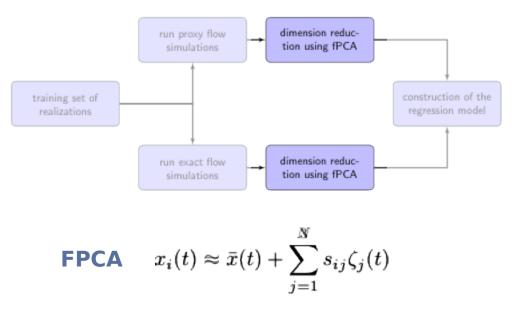
laureline.josset@unil.ch - MASCOT-NUM 2015

08/04/15

Drinking well



**UNIL** | Université de Lausanne



Principal components (or harmonics)  $\zeta_j(t)$  that maximises

$$d_{i} = \operatorname{var}\left(\int \zeta_{i}(t) [x_{j}(t) - \bar{x}(t)]dt\right)$$

Principal components scores

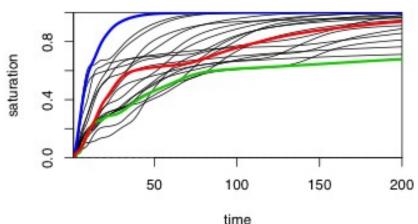
Unil

UNIL | Université de Lausanne

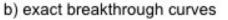
$$s_{ij} = \int [x_i(t) - \bar{x}(t)]\zeta_j(t)dt$$

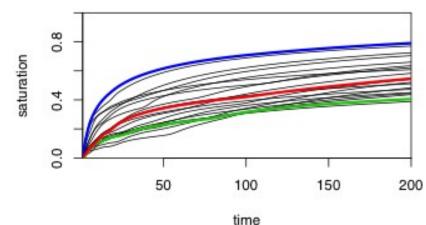
Proportion of data explained by the ith harmonics

a) proxy breakthrough curves



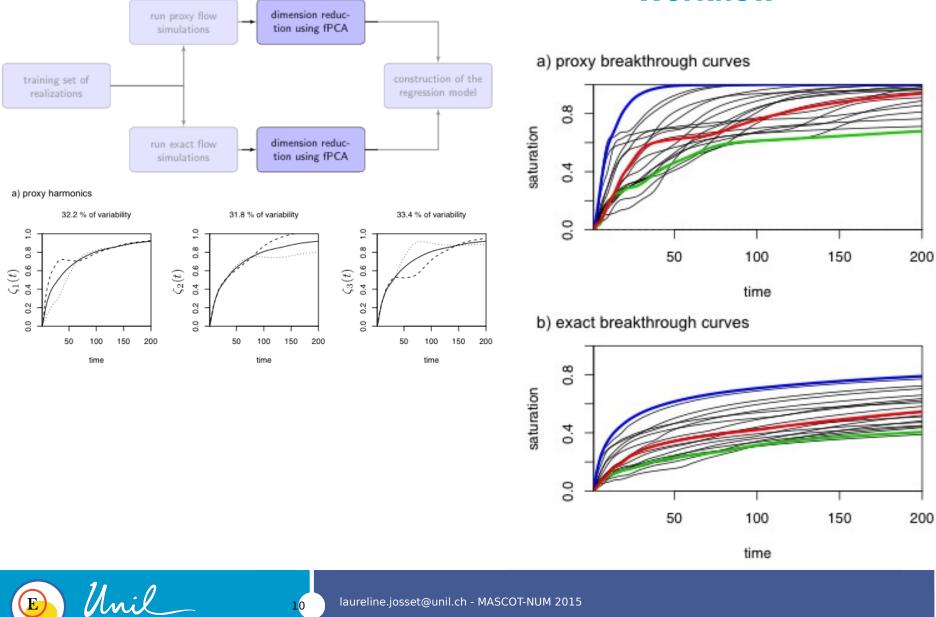






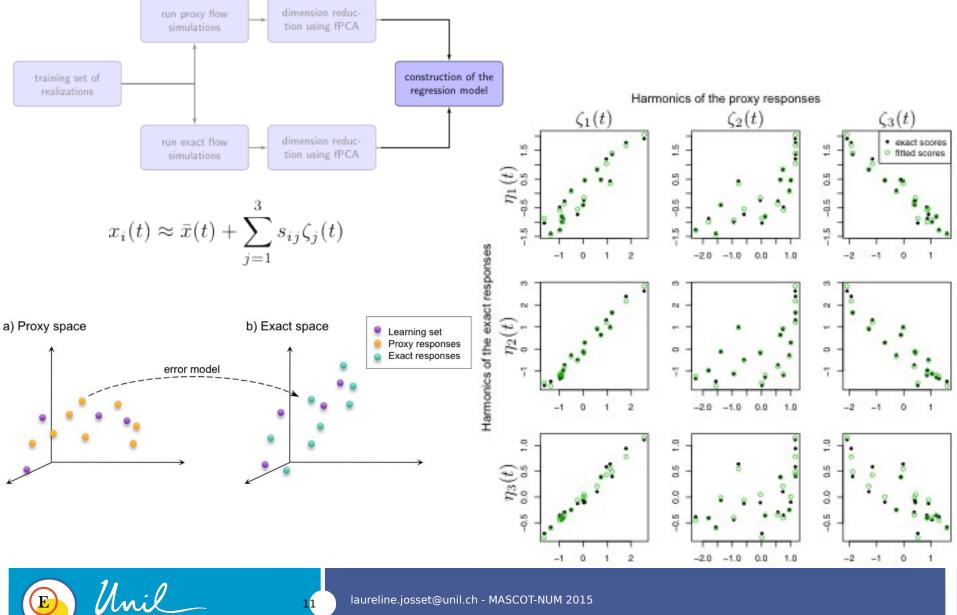
laureline.josset@unil.ch - MASCOT-NUM 2015

 $\frac{d_i}{\sum d_j}$ 



laureline.josset@unil.ch - MASCOT-NUM 2015

UNIL | Université de Lausanne



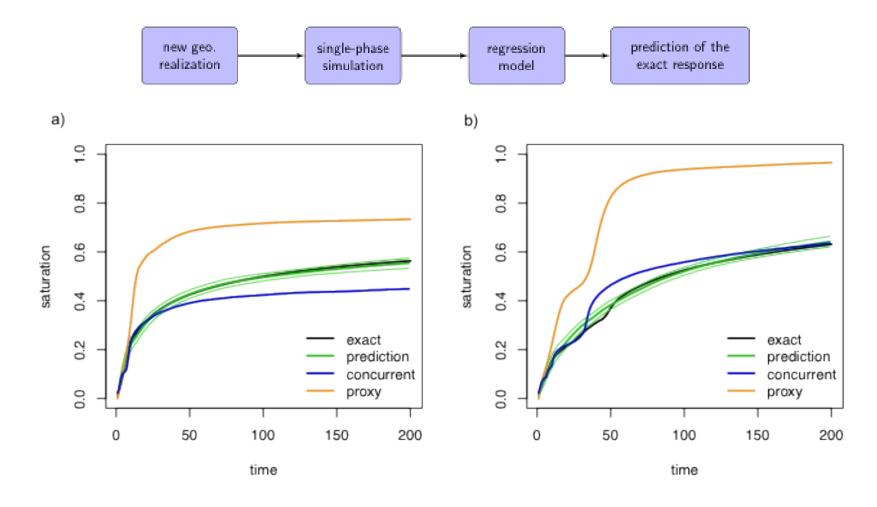
laureline.josset@unil.ch - MASCOT-NUM 2015

11

E

UNIL | Université de Lausanne

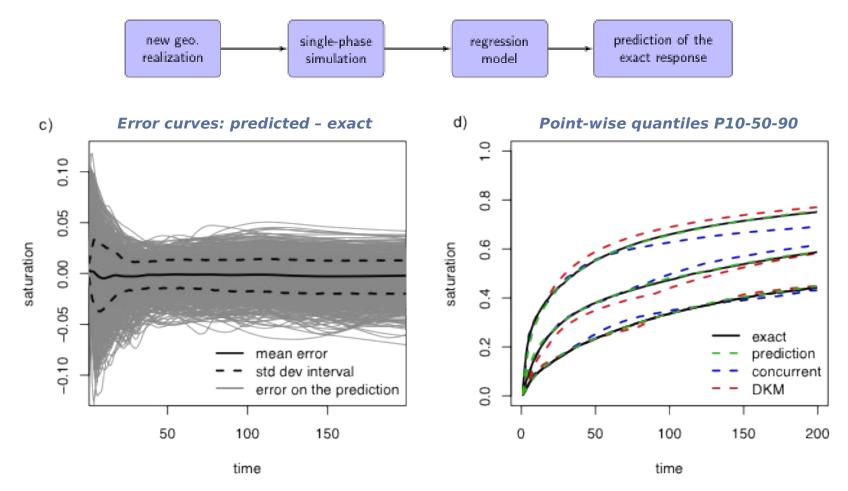
## **Two examples of predictions**





12

## **Prediction of the ensemble** 1000 realizations

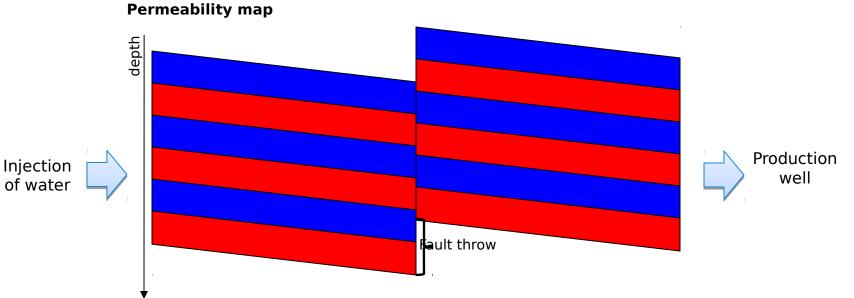


Good prediction of the point-wise quantiles Prediction for each of the curves Susful beyond UQ

UNIL | Université de Lausanne

laureline.josset@unil.ch - MASCOT-NUM 2015

13



## ILLUSTRATION 2 HISTORY MATCHING



laureline.josset@unil.ch - MASCOT-NUM 2015

14

## IC Fault test case

#### Z Tavassoli, JN Carter, PR King (2004) Permeability map depth 3 parameters: Fault throw =? $K_{hiah} = ?$ $K_{low} = ?$ Production Injection well of water ault throw **Observed data:** Oil production rate Water production rate 600 500 Choice of simplified physics model: Goal: 400 single-phase simulation Sample the parameters given rate 300 $\rightarrow$ Provides information on the the observed data 200 connectivity of the realizations 100

#### **Imperial College Fault problem**

 $p(\theta|y) \propto \mathcal{L}(\theta; y) p(\theta)$ 

UNIL | Université de Lausanne

11...:0

→ Cheap: pressure problem is solved only once

08/04/15

400

600

800

1000

0

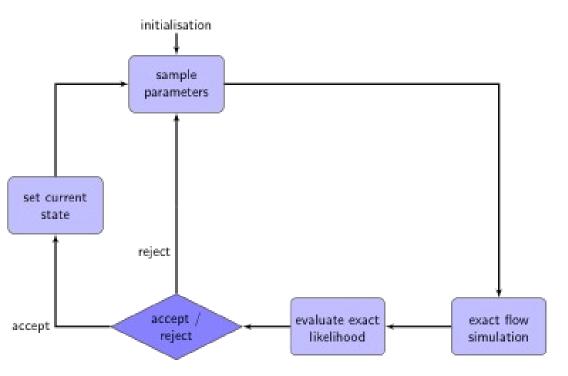
0

200



15

## 2-stage MCMC



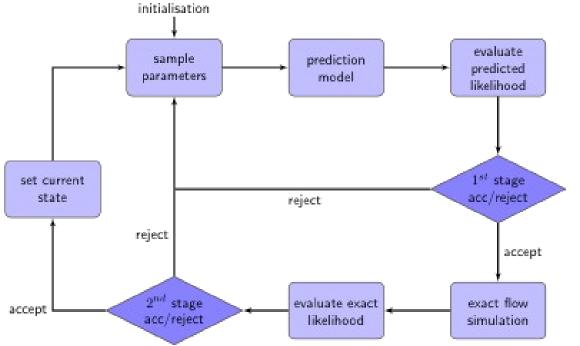
16

#### **Metropolis-Hastings**

- To sample the posterior probability density function
- Typical application 10<sup>5</sup> iterations
- finite length chains should be able to explore all areas of the prior space
- Increase the step length of the chains?
  - Drastic reduction of the acceptance rate
  - High number of wasted simulations



## 2-stage MCMC



17

#### **Metropolis-Hastings**

- To sample the posterior probability density function
- Typical application 10<sup>5</sup> iterations
- finite length chains should be able to explore all areas of the prior space
- Increase the step length of the chains?
  - Drastic reduction of the acceptance rate
  - High number of wasted simulations

#### 2-stage MCMC\*

- Avoid unnecessary run of the exact solver
- Reject samples based on the predicted response

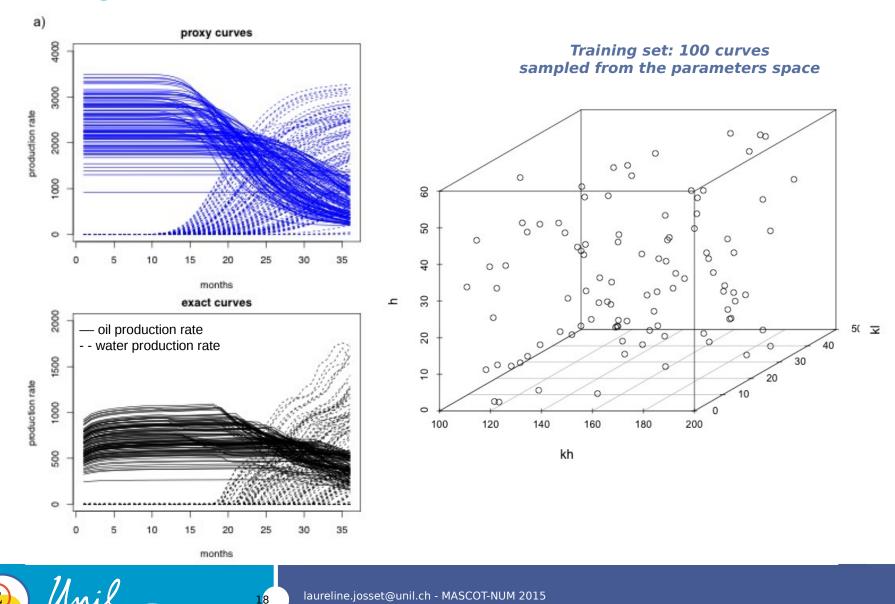
#### \*Christen and Fox (2005), Efendiev et al. (2005, 2006)



## **Training set and dimension reduction**

18

**UNIL** | Université de Lausanne

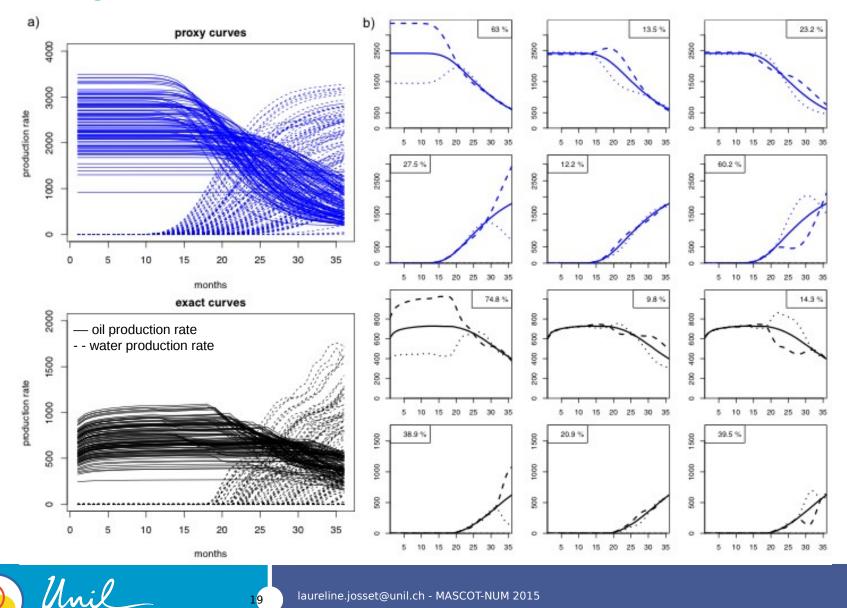


laureline.josset@unil.ch - MASCOT-NUM 2015

## **Training set and dimension reduction**

19

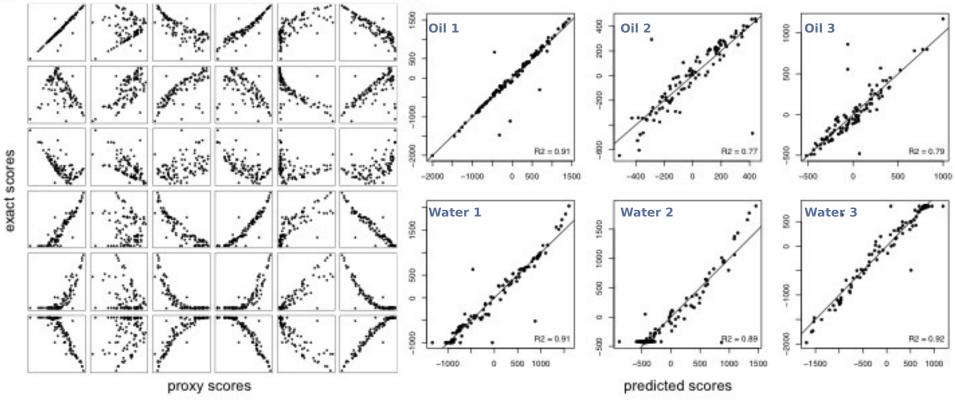
UNIL | Université de Lausanne



laureline.josset@unil.ch - MASCOT-NUM 2015

## **Construction of the regression model**

a) Scatterplot of the exact and proxy scores b) Plot of the exact VS predicted scores





20

#### The proxy is useful to predict the exact response

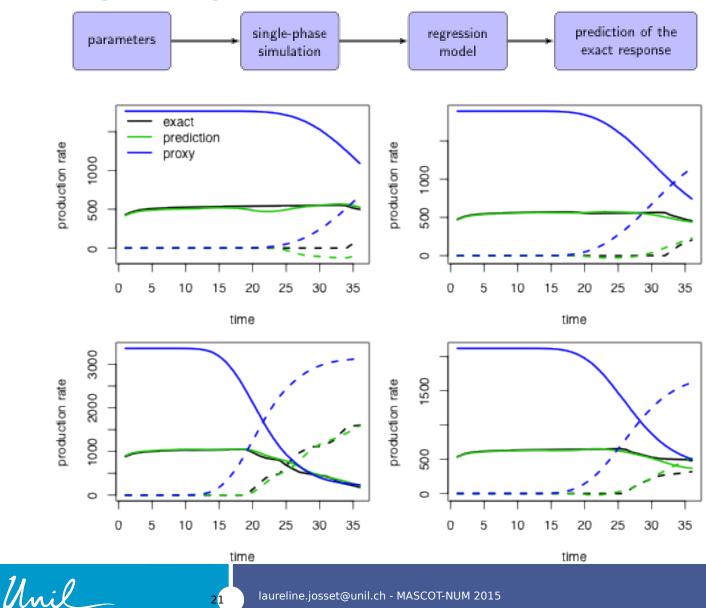


laureline.josset@unil.ch - MASCOT-NUM 2015

## Four examples of predictions

E

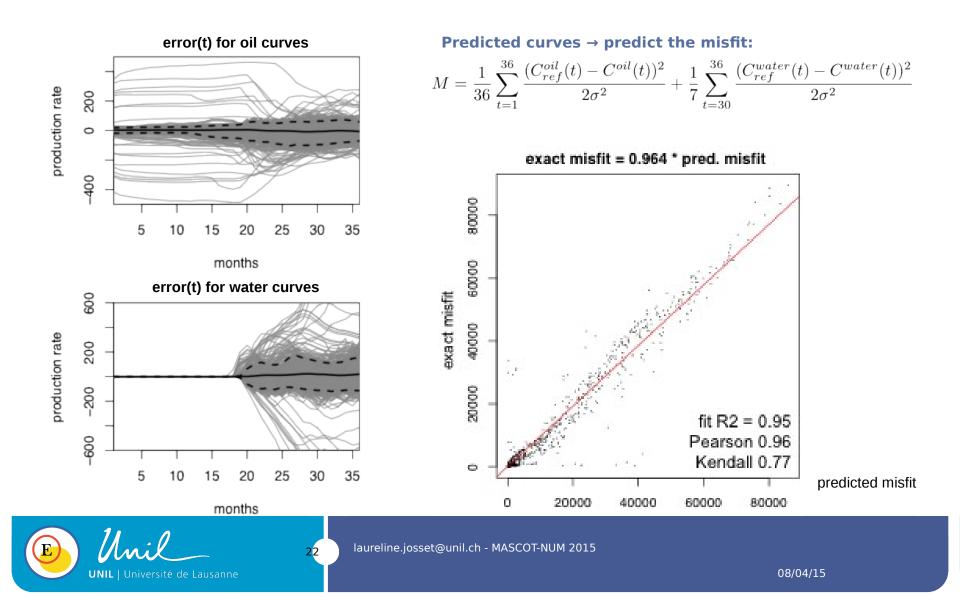
UNIL | Université de Lausanne



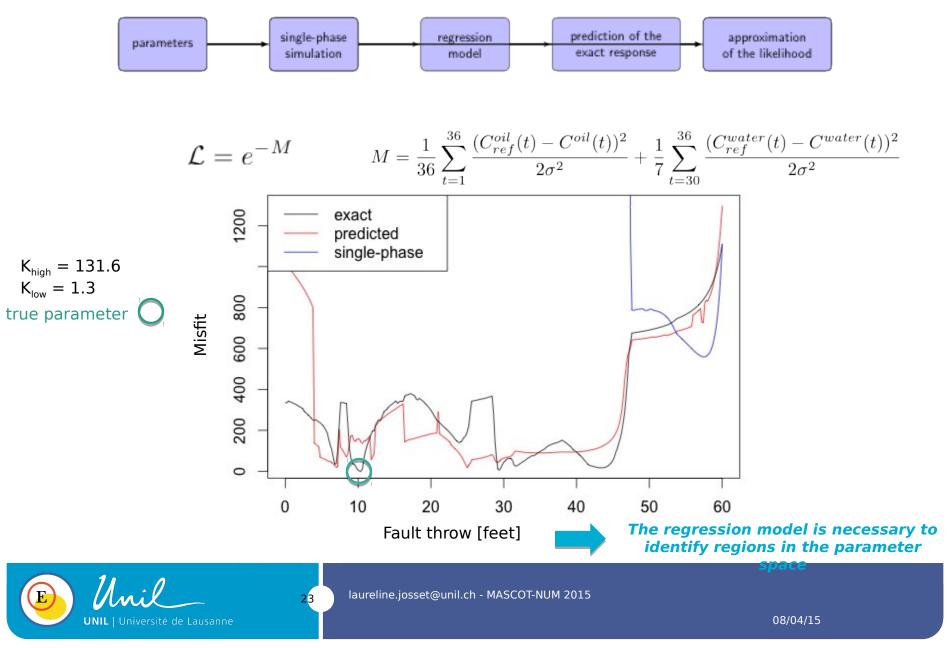
laureline.josset@unil.ch - MASCOT-NUM 2015

21

#### Evaluation of the performance of the error model Test set of 1000 realizations



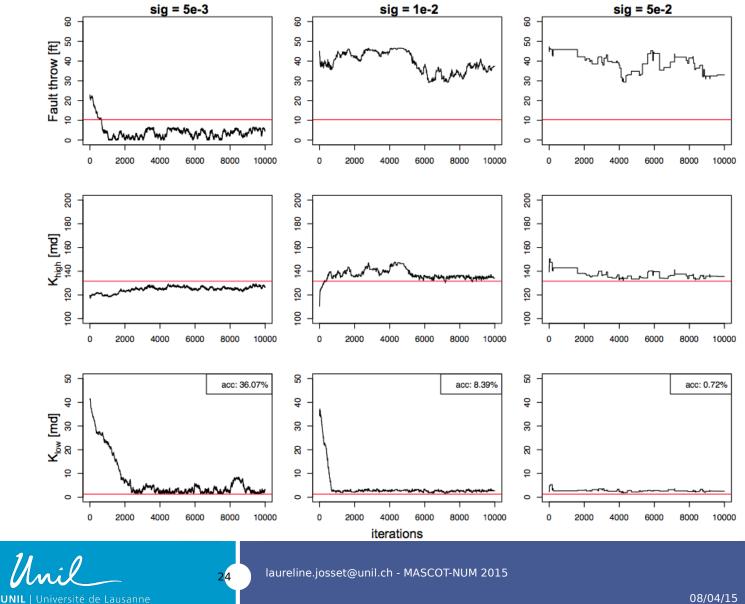
## Is the error model necessary?



## **Metropolis-Hastings results**

E

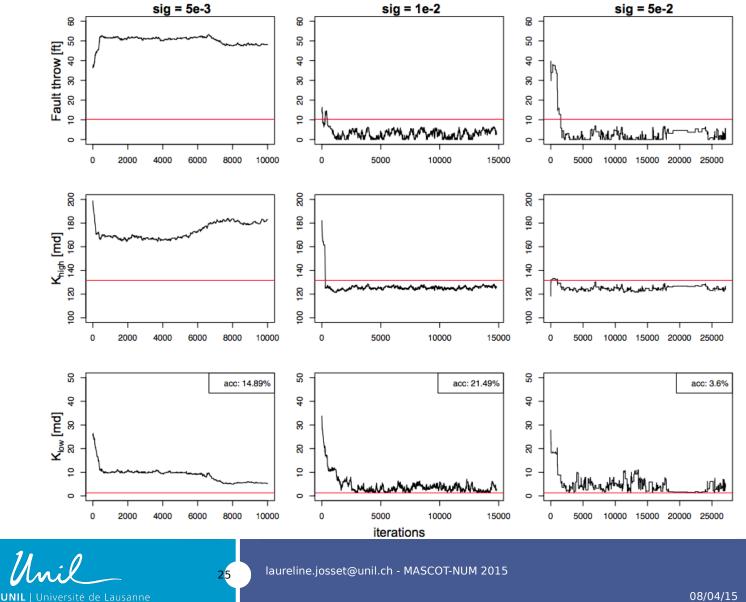
#### **3 chains for different step size** Length: 10'000 evaluations



## **2-stage MCMC results**

E

#### 3 chains for different step size Length: equivalent MH



## **Comparison of the results**

| random walk       | nb of it.          |        |                   | nb of | acc. 1         | lstage sim | nb of acc. 2stage sim |                |                | acc. rate |       |       |       |
|-------------------|--------------------|--------|-------------------|-------|----------------|------------|-----------------------|----------------|----------------|-----------|-------|-------|-------|
| σ                 | C1                 | C2     | C3                | C1    | C2             | C3         | C1                    | C2             | C3             | C1        | C2    | C3    | mean  |
|                   | Metropolis-Hasting |        |                   |       |                |            |                       |                |                |           |       |       |       |
| $5 \cdot 10^{-3}$ | 10'000             | 10'000 | $10^{\circ}000$   |       |                |            | 1'631                 | $3^{\circ}247$ | $1^{\circ}291$ | 18.1%     | 36.1% | 14.3% | 22.8% |
| $1 \cdot 10^{-2}$ | 10'000             | 10'000 | $10^\circ\!000$   |       |                |            | 1'683                 | 755            | 628            | 18.7%     | 8.4%  | 7.0%  | 11.4% |
| $5 \cdot 10^{-2}$ | 10'000             | 10'000 | $10^{\circ}000$   |       |                |            | 179                   | 65             | 48             | 2.0%      | 0.7%  | 0.5%  | 1.1%  |
|                   | Two-stage MCMC     |        |                   |       |                |            |                       |                |                |           |       |       |       |
| $5 \cdot 10^{-3}$ | 10'000             | 10'000 | 10'000            | 4'760 | 5'299          | 9 176      | 367                   | 789            | 41             | 7.7%      | 14.9% | 23.3% | 15.3% |
| $1 \cdot 10^{-2}$ | 14'372             | 14'815 | $31^{\circ}\!738$ | 9'666 | 9'656          | 5 - 7'820  | $2^{\circ}060$        | $2^{\circ}075$ | 331            | 23.3%     | 21.5% | 4.2%  | 16.3% |
| $5 \cdot 10^{-2}$ | 28'337             | 31'777 | $27^{\circ}108$   | 9'341 | $9^{\circ}261$ | 9'370      | 393                   | 518            | 337            | 4.2%      | 5.6%  | 3.6%  | 4.5%  |

#### 2-stage MCMC with the error model

- Higher acceptance rate
- Longer chains can be run for the same computational cost

#### However

- Nowhere near convergence
- ICF still a very challenging problem
- As the Swiss say: "ça va pas mieux mais plus longtemps !"

26





## Conclusion Key ideas

#### **Prediction model**

- = proxy + error model
- = single-phase + FPCA regression

- Why single-phase flow simulations:
  - Connectivity is what varies between realisations
  - Cheap: pressure is solved only once
- Why error modelling:
  - Missing physics has to be taken in account

#### **Advantages**

- Strong reduction of computational costs
- Allows the evaluation of the relevance of the proxy for the specific problem

#### Outlook

- On going work: sensitivity analysis
- Application to seawater intrusion in coastal aquifer
- Evolve to more complex regression model
   -> Kernel methods



27

### Acknowledgements

David Ginsbourger, University of Bern Ahmed H. Elsheikh and Vasily Demyanov, University of Heriot-Watt



UNIVERSITÄT BERN







Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

#### References

- L. Josset, D. Ginsbourger and I. Lunati, "Functional error modeling for uncertainty quantification in hydrogeology", Water Resources Research (2015)
- L. Josset, V. Demyanov, A.H. Elsheikh and I. Lunati, "Accelerating Monte Carlo Markov chains with proxy and error models", Computer and Geosciences (in revision)
- P. Bayer et al., "Three-dimensional high resolution fluvio-glacial aquifer analog", J. Hydro 405 (2011) 19
- G. Mariethoz, P. Renard, and J. Straubhaar "The Direct Sampling method to perform multiple-point geostatistical simulations", Water Resour. Res., 46 (2010)
- J. Ramsay, G. Hooker and S. Graves, "Functional data analysis with R and MATLAB", Springer (2009)
- P. Tavassoli et al., "Errors in history matching", SPE 86883 (2004)

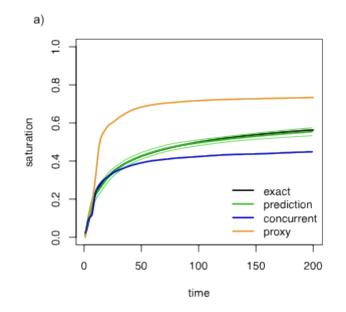
## THANK YOU FOR YOUR ATTENTION

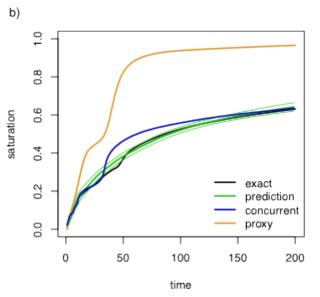


28

laureline.josset@unil.ch - MASCOT-NUM 2015

## Simultaneous confidence bands





$$Pr\Big(\tilde{y}(t) \in [\hat{y}(t) - w_{\alpha}(t), \hat{y}(t) + w_{\alpha}(t)] \text{ for all } t\Big) = 1 - \alpha$$

$$w_{\alpha}(t) = \sqrt{\left(\frac{D_{ex}(N_{l}-D_{app}-1)}{N_{l}-D_{ex}-D_{app}}\right)}F_{D_{ex},N_{l}-D_{ex}-D_{app}}(\alpha)$$
$$\times \sqrt{(1+\mathbf{b}'(\mathbf{B}'\mathbf{B})^{-1}\mathbf{b})\left(\frac{N_{l}}{N_{l}-D_{app}-1}\right)\boldsymbol{\eta}'(t)\hat{\boldsymbol{\Sigma}}\boldsymbol{\eta}(t)},$$

Mail

UNIL | Université de Lausanne

with  $\ensuremath{\eta}(t)$  the values of the exact harmonics  $\ensuremath{\hat{\Sigma}}$  the covariance matrix of errors

F(lpha) Fisher's lpha quantile